Python quick reference
Resources
- for beginners without much programming background: Learn python the hard way
- a more systematic tutorial: python: tutorialspoint
- from R to Python: python for R
Contents
- Special Characters
- Variables and Operators
- Functions
- Input/Output
- Control Flow
- Data Structures & Classes
- Modules
- Python for data analysis
- Selected topics
- Other
Special characters
#
: add comments after#
- common escape sequences:
\t, \n, \', \" ,\\ ...
\
: line continuation character' '
and" "
have the same effects- use
;
between statements to allow multiple statements in a single line True, False, None
Variables and operators
-
basics:
+,-,*,/ ... # straight forward % # modulo operator // # floor division: take floor() after division a**b # exponential: a^b # bitwise operator same as C A | B #Set union A & B #Set intersection A & ~B #Set subtraction ALL_BITS ^ A or ~A #Set negation A |= 1 << bit # Set 1 to bit A &= ~(1 << bit) # Clear bit (A & 1 << bit) != 0 # Test bit A&-A or A&~(A-1) or x^(x&(x-1)) #Extract last bit A&(A-1) #Remove last bit ~0 #Get all 1-bits
for a review of bitwise operations: bitwise operations review
- Logical variables:
True, False
- Logical operators:
not(),A or B, C and D
- check type of a variable:
print type(variable)
orprint type(variable).__name__
- multiple assignment of variables:
a,b,c = 1,2,'power'
- standard data types:
- numbers:
var1 = 1; var2 = 2.0 # var1 int, var2 double
del var1, var2 # remove variables
- string
- list
- tuple
- dictionary
- numbers:
-
the
dir()
function:print dir() # all variables in the current space print dir(module_name) # all variable names in a module
-
the unpack operator
*
:x= ['A','B','C'] # pass A,B,C as separate arguments fun(*x)
-
global/local variables:
global var # assign `var` to its global value in a local environment (eg. in a function) globals() # gives a dict of global variables locals() # gives a dict of local variables
Functions
-
define a function:
# a simple function example def my_fun(x,y): print "sum of x and y is ", x+y return (x,y,x+y) # or {'x':x,'z':x+y} # use the function my_fun(2,3) my_fun(x=2,y=3)
Note that you can return multiple things separated by
,
as a ordered list of items. Letout = my_fun(1,3)
. We can access values byout[0]
(orout['x']
in the commented case) -
write a function with unknown number of arguments:
*args
and**kwargs
# args handles all unnamed arguments and put in a tuple # kwargs handles all named arguments and put in a dictionary def myfun(*args,**kwargs): print(args) print(kwargs) # examples myfun(1,2,'x') #(1, 2, 'x') #{} myfun(x=1,y=2,z='x') #() #{'x': 1, 'y': 2, 'z': 'x'}
-
Pass by reference vs value
All python parameters are passed by reference, i.e. when a parameter is used in a function, a new reference to the same object is created and used in the statements in the function body.# example function def change(mylist): mylist.append('2'); # change the object mylist += ['a','b']; # change the object mylist = mylist + ['c','d']; # does not change the object # because at this line, a new object is created and mylist become a reference to that, while the old object remains return;
-
variable length arguments in functions
# example function def eg(arg1, *vartuple): print arg1 for var in vartuple print var return # the argument followed by * holds the remaining parameters
-
lambda functions (small anonymous functions)
# lambda function example g = lambda x: x**2 f = lambda x,y: x**2 + y**2 print g(3) print g(1,2)
Input/Output
command line input/output
-
print
examples:# basics print "hello world" print "hello", "world" print "Power" + "God" # concatenating, no space in between word1 = "hello"; word2 = "world" print "say: %s %s" % (word1,word2) print "say: %s" % word1 print word1, word2 # more examples print "God " *10 # repeatedly printing print """ type in as long as you want you can use multiple lines """ # the use of tripple quotes
- use
%s
for strings,%d
for integers,%f
for floating point. Use%r
when debugging for raw version of variables - if add a
,
at the end of aprint
sentence, then it doesn’t end the line.
- use
-
taking inputs interactively:
prompt = '>' # optional print "tell me your age: " age = raw_input(prompt) #eg age = raw_input("How old are you?") #or import sys data = sys.stdin.read() # read from input
- you need to use
print( )
in python3 or later versions
- you need to use
-
passing command line input:
from sys import argv # first argument is always the script script, first, second = argv # first argument in arg1, the remaining in arg script, arg1, *arg = argv
file input/output
-
file objects:
usetxt = open(filename)
where theopen
function returns a file object. There are also three modes,'r'
(read),'w'
(write), and'a'
(append), for opening the file. With the file object, you can do:txt.read() txt.write("stuff") txt.readline() # read only one line txt.truncate() # erase the file txt.close() # close the file # others txt.name # name of the file txt.closed # bool: whether the file is closed txt.mode # open mode
Control Flow
Indentation matters in the following codes.
# if sentence:
if cond1:
statement1
elif cond2:
statement2
else:
statement3
# conditional expression
x = val1 if condition else val2 # same as
if condition: x = val1
else: x = val2
# for loop:
for iterator in range:
actions_in_each_iteration
else:
after_condition_violation
# while loop:
while (condition):
actions_in_each_iteration
else:
after_condition_violation
# loop control statements
break
continue
pass # null operation
Note that an else:
statement can be added after each looping structure.
Data Structures & Classes
Numbers
Tutorialspoint: Numbers overview
- type convertion functions:
int(x); long(x); float(x); complex(x)
Strings
# initialization
mystring = "a test sentence"
# member functions
mystring.split(' ') # split by ' ' into a vector of strings
mystring.strip() # remove the return at the end (if any)
mystring.join(seq) # concatenate values in seq using mystring as separater
mystring.endswith(str) # test the end of mystring
mystring.replace(str1, str2) # replace str1 with str2, return new string
mystring.isupper(); mystring.islower() # test upper/lower case
mystring.index('a')
mystring.count('c') # get index and counts of a substring
mystring.find("str") # find substring; if not found return -1
# others
str[1:3]
str[2:] # subsetting
str*2 # string repitition
str + "another string" # string concatenation
str() # convert to string
list(s) # turn string into list of characters
str[1]='a' #DOES NOT WORK! strings do not support modification
ord('x') # letter to ASCII code
chr(5) # code to letter
List
# initialization with []
mylist = [1,2,'a',(1,2,3),[1,2]]
mylist = ['a'] * 10 # initialize with length
# member functions
mylist.append() # append to the end of list
mylist.sort() # sort the list (in place)
mylist.pop() # pop the last item
mylist.pop(i) # pop the ith
mylist.reverse()
mylist.insert(index, obj) # insertion
mylist.remove(object) # deletion
mylist.count(item) # count the frequency of item
mylist.index(val) # get index of a value
# ... etc
# others
mylist[2:] # subsetting
mylist[-3:]
mylist[:2]
mylist[1:2]
mylist[::-1] # reversing
mylist*2 # repetition
mylist + list2 # list concatenation
del mylist[2] # item deletion
3 in [1,2,3] # membership test
list(var) # convert to list
a = b = c = []
# cautious! a,b,c refer to the same empty list
Note:
- list slicing results in a copy of list
Tuples
The main differences between lists and tuples are: Lists’ size can be changed, while tuples cannot be updated. Tuples can be thought of as read-only lists.
# initialization by round parenthesis
mytuple = ('abc','def',1,2,3)
# member functions
mytuple.index('abc') # get index
mytuple.count(1) # get frequency of element
# others (similar to lists)
Dictionary
Dictionary is a hash table like data structure in Python.
# initialization with curly braces
mydict = {}
mydict = {'one': "power", 'two': "god"}
mydict['one'] = "item 1"
mydict[2] = "item 2" # keys can be almost anything that is immutable
# member functions
mydict.keys() # get keys
mydict.values() # get values
mydict.get(key,default=None) # get value for key; if no key found, return default
mydict.clear() # empty the mydict
mydict.items() # returns a list of tuple (key, value) pairs
mydict.update(mydict2) # add mydict2 elements to mydict; repeated keys in mydict2 will be discarded
mydict.pop(key) # remove an item
mydict.setdefault(key,default_value) # use default_value if key not found
Sets
# set initialization
s = set([...])
s = {0}
# operations
s.add('element') # add elements
s.remove("element")
s.union(s2)
s.intersection(s2)
# set operators
|, |=
&, &=
-, -=
^, ^=
>=, <=
CLASSES
Python is an object-oriented language, thus it’s very easy to define classes and objects.
## create a class
class myclass:
"this is the first class I create"
name = ""
height = 0
weight = 0
bmi = 0
__secret = "hidden variable"
# class initiation method
def __init__(self,name, height, weight):
self.name = name
self.height = height
self.weight = weight
self.bmi = (self.weight)/(self.height)**2
# printing method
def printmyclass(self):
print("Name:",self.name)
print("Height:",self.height,"\nWeight:",self.weight)
print("Your bmi is calculated as: %.3f" % self.bmi)
# destroy this object:
# Python deletes built-in types or class instances automatically to free the memory space
# just to pop out a message
def __del__(self):
print(self.__class__.__name__, "destroyed")
## use a class
me = myclass("PowerGod",1.72,68)
me.printmyclass()
print me.bmi
## methods on a class object
print (hasattr(me,"height")) # test existence of an attribute
print (getattr(me,"height")) # get an attribute
setattr(me,"height",1.78) # ...
delattr(me,"weight")
me.printmyclass()
## selected built-in attributes
me.__doc__ # documentation string
me.__dict__ # dictionary of class's namespace
# private variables
# name the variables you want to hide with double underscore prefix
print (me.__secret) # will give error
Class inheritance: assume that myclass
is defined, then we can define a child
subclass that inherit all its attributes:
class child(myclass):
"""
this is a subclass of myclass
all myclass's attributes can be inherited
"""
major=""
year=1993
def printchild(self):
print(self.name," is going to graduate in ",self.year)
me2 = child("PowerGod",1.00,45.00) # using parent class method
me2.printchild() # using subclass method
me2.printmyclass() # using parent class method
# can also use super() to access parent class methods
# eg
def __init__(self):
super().__init__(a,b,c)
Notes:
-
Python also allows multiple inheritance
class child(myclass1, myclass2): pass
child
can use member methods from both parents. If there are shared method names, the method frommyclass1
would be used
Python environment management
Assume you have Anaconda installed.
# create a new environment
conda create --name env_name python=3.5 ...
conda create --name a_copy python=2.7 anaconda # with all current packages, but on different version of python
conda create --name from_list --file requirements.txt
# activate and deactivate
source activate env_name
source deactivate
# list
conda search pandas
conda list pandas
conda list --explicit > requirements.txt # dump packages in env
# install remove
conda install <package-name>
conda remove --name <env_name> --all # totally clear the environment
# info
conda info --env
Packages and Modules
Modules
# a python source file can be used as a module
# import a python source file support.py
import support # similar to source(support.R)
support.myfun() # use myfun() from support.py
# import certain items from module
from module_name import item1, item2
from support import myfun # example
myfun() # this time no need to use module name in the front
# import all names from the module
from moduel_name import *
myfun() # no need to use module name in the front
Packages
A package is a hierachical directory with multiple modules. For instance, I have a folder temp
, with source files file1
and file2
.
# to make it into a package, add a __init__.py file in the temp folder, with commands
__all__ = ["file1","file2"]
from temp.file1 import item1, item2 ...
from temp.file2 import item1, item2 ...
# now we can import this temp package
import temp
from temp import file1 # or part of the package
file1.item1()
# to skip temp.
from temp import *
file1.item1()
file2.item1()
- the
__all__
is used forfrom temp import *
. Without it,import *
would result in name collision (item1
exists in both files).__all__
resolves this by requiring to add submodule name in the front. - read more on organizing packages:
python software fundation : modules
Useful Modules/Packages
-
os
: provide functions to take actions related to operating system sys
: system-specific parameters and functionssys.path ...
: modify system searching pathsys.argv
: command line inputssys.exit(code)
: exit program withcode
subprocess
subprocess.call(cmd, shell=True)
: runcmd
as shell command
re
module for regular expressions:
Python regular expression
Python for data analysis
The built-in data structures of Python are not easy to use when performing data analysis. A couple of popular packages provide Python many R-like functionalities, and are perfect for data scientists.
NumPy
for- math function evaluations (on arrays, list etc)
- sampling from distribution (
numpy.random.***
) - array (matrix) manipulation
- tutorial: NumPy quick start
SciPy
for scientific computing- linear algebra
- numerical integration
- optimization
Pandas
forSeries
: fixed-size dictDataFrame
: most commonly used objectPandas
objects are suitable for mostNumpy
functions- import (or write) files from different data structures:
Series.to_csv, Series.from_csv
DataFrame.to_csv, DataFrame.from_csv
- tutorial:
pandas data structure
pandas tutorial
matplotlib
for visualization- tutorial: matplotlib tutorial
sklearn
for- machine learning tools
yaml
for- read parameters from files:
""" The following is my parameter file: par1: a par2: [b,c] par3: (d,e,f) """ import yaml txt = open(file_path) pars = yaml.load(txt) txt.close()
Then the parameters are saved as elements in
pars
which is adict
type variable.-
pickle
for saving and restoring python work space:import pickle # Save objects: f = open("results.pckl","wb") pickle.dump([obj1,obj2,obj3],f) f.close() # restore the objects: f=open("results.pckl","rb") obj1,obj2,obj3 = pickle.load(f) f.close()
- data structure modules:
heapq
for implementations of heaps
Selected topics
Sorting
# sort list using member function
# note: tuple, dict do not have .sort() member
ls =[a,b,c]
ls.sort() # default sorting
ls.sort(key = myfun) # customized sorting
# sort using sorted():
# note this can be used to sort tuple, dict and other objects
sorted(obj, key = myfun)
Others
-
get help:
typepydoc python_function
in terminal to get document for a python function - IDE recommendation
-
object ids (like address of an object in C):
id(var)
, unique identification number for each object - output formatting
-
assertion:
assert expression, "error message"
: if expression result inFalse
, an error is incurred, and the error message is printed -
try-except
exception handling, andraise
exceptions# basic syntax try: code may have error except: what to do when error exists # more detailed try: your operations ; except ExceptionI, ExceptionII: If there is ExceptionI, ExceptionI then execute this block. except ExceptionII: If there is ExceptionIII, then execute this block. else: If there is no exception then execute this block. finally: always execute this block # raise exceptions, eg: def raise_exception(s): if s<10: raise Errortype("error message") return try: raise_exception(20) except Errortype as e: actions on this exception(e) raise ........ # define your own error type class my_err(Exception): def __init__(self,message): ... # usage try: raise my_err("message") except my_err as e: actions(e)
for a list of Exception types, see exception handling
-
reload module in interactive mode:
when developing the package, you need to constantly modify and update the modules that have been imported. To re-import after modification, you need to useimportlib.reload(module.file)
. -
Write python main function:
Python does not have aint main()
function as C/C++ do, but you can do the following to realize something similar tomain()
:import XXXXX # you code here def myfun(): # .... if __name__ == "__main__": # when file directly sourced # do something else: # when file imported by other processes # do soemthing else
- variable
__name__
represent the name of current module
- variable
-
the
with
keyword# syntax with expression [as variable]: with-block # example with open('output.txt', 'w') as f: f.write('Hi there!') """ 1. can automatically close file at the end of with-block 2. guarantees to close file no matter what exception raised in the block """
Leave a Comment